
Userial USB to I2C/SPI/GPIO Bridge

User Manual

Thomas Pircher

Userial USB to I2C/SPI/GPIO Bridge: User Manual
Thomas Pircher

Updated: 16 December 2014, documenting firmware v1.9.

Publication date 16 December 2014, v1.9.1
Copyright © 2008-2010 Thomas Pircher

This document is released under the terms of the Creative Commons Attribution-Share Alike 3.0 Unported License [https://
creativecommons.org/licenses/by-sa/3.0/].

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

iii

1. Introduction to userial .. 1
2. Installation .. 2

Installation on Linux, BSD, OS X .. 2
Driver installation on Microsoft Windows .. 2

3. Protocol Description ... 3
Firmware Version request ... 3
I2C Protocol .. 3

I2C Configuration .. 3
I2C Reads and Writes ... 3
I2C Bus Clear ... 4
I2C Slave Reset ... 5

GPIO Protocol .. 5
GPIO Configuration ... 5
GPIO Read ... 5
GPIO Bit Set .. 6

SPI Protocol ... 6
SPI Configuration .. 6
SPI Reads and Writes .. 7

ADC Protocol ... 7
ADC Configuration .. 7
ADC Readback ... 8
ADC Readback in Volts ... 8

Comments .. 8
4. Firmware upgrade .. 9

Recompiling the Firmware .. 9
Firmware upgrade using FLIP ... 9
Firmware upgrade using ButtLoad .. 9

Upgrading the boot loader ... 9
5. Hardware Description ... 10

Jumpers and Connectors .. 10
Board ... 11
Schematic ... 12

1

Chapter 1. Introduction to userial
userial is an Open Source USB to I2C/SPI/GPIO bridge. The board uses an ATMEL [http://
www.atmel.com] AT90USB647 chip and provides the following interfaces:

• 1 × USB interface (serial emulation, to the PC)

• 1 × JTAG port

• 1 × I2C port

• 1 × SPI port

• 8 × General purpose digital I/O (GPIO) lines

• 4 × Analog to Digital (ADC) converters

The board communicates with the host computer using a CDC (USB communications device class).
This makes it easy to use userial without installing a device driver or special libraries. Under Windows
it is necessary to install a .inf file while Linux and Mac OS will recognise the device correctly as
serial port without particular configuration. Due to the ASCII based command interface it is easy to
control devices manually with just a terminal emulation. This makes it easy to obtain quick results, to
configure devices on-the-fly or to control prototyping boards in a straight-forward way.

Schematics and firmware are available to the public. The firmware is released under the terms
of the MIT license [http://opensource.org/licenses/mit-license.php] and the hardware is released
under the terms of the Creative Commons Attribution-Share Alike 3.0 Unported License [https://
creativecommons.org/licenses/by-sa/3.0/].

userial is based on Dean Camera's LUFA [http://www.fourwalledcubicle.com/LUFA.php]
(Lightweight USB Framework for AVRs) library.

http://www.atmel.com
http://www.atmel.com
http://www.atmel.com
http://opensource.org/licenses/mit-license.php
http://opensource.org/licenses/mit-license.php
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://www.fourwalledcubicle.com/LUFA.php
http://www.fourwalledcubicle.com/LUFA.php

2

Chapter 2. Installation
The userial board is a USB communications device class (CDC) device and is visible as a virtual COM
port to the user. Most Operating Systems already include drivers for this kind of device.

The serial settings are not important for the USB communication. The values of 115200 bps, 8 data
bits, no parity, 1 stop bit are a safe choice. Hardware handshake should be turned off.

Installation on Linux, BSD, OS X
Virtually all UNIX systems include an ACM driver already in their kernel. Under Linux this device
is accessible as a /dev/ttyACMx device file. The device can be opened using a serial terminal such
as miniterm or cutecom.

Driver installation on Microsoft Windows
Users of Microsoft Windows need to install the file userial.inf when the Hardware Wizard
searches for new devices. There are many serial terminals for Windows out there to access the userial
device. Some of them are: Hyperterm, TeraTerm or Br@y terminal.

3

Chapter 3. Protocol Description
The userial protocol is ASCII based, in order to make it easy to insert commands and to read the replies
in a serial terminal emulation. In the following examples, lines starting with a less-than character (<)
are commands sent to userial; lines with a greater-than character (>) are replies.

All commands are case insensitive, though the replies are always uppercase. It is possible to specify
ASCII characters instead of hex numbers. Those characters must be escaped by a backslash.

Example 3.1. Alternative data formats

< IS12W303132P
< is12w303132p
< IS12W\0\1\2P

A line must end with a carreage return '\r' or a newline '\n' or any combination of those two.

Firmware Version request
The software version can be queried with the 'V' command.

Example 3.2. Requesting the firmware version

< V
> V1.9

I2C Protocol

I2C Configuration
The only I2C configuration parameter so far is the clock rate. It is changed by using the 'I' command,
followed by the 'C' character and the clock rate in kHz, expressed as a hexadecimal number. The reply
to the configuration command is the clock rate effectively set in hardware.

To query the current configuration, just send the command 'IC'. The description of a I2C configuration
command is:

IC[<dd>]

IC Start of a I2C configuration command.

<dd> The frequency of the I2C clock rate in kHz, expressed as a hexadecimal number.

The following example sets the I2C master clock frequency to 100kHz (0x64 in hexadecimal).

Example 3.3. Setting the I2C clock rate to 100kHz

< IC64
> IC0064

I2C Reads and Writes
A complete I2C transaction is written entirely on one line. It starts with 'IS' (start) and ends with
'P' (stop) and may contain zero or more repeated start commands ('S') in between. The general form
of a I2C read/write command is as follows:

IS<aa>(R|W)<dd>[S<aa>(R|W)<dd>…]P

Protocol Description

4

IS I2C Start Command.

The reply to 'IS' is 'IS'.

<aa> The I2C slave address in a left-aligned form. The last bit of the address must match the Read/
Write operation: 1 for a Read and 0 for a Write operation

The reply to '<aa>' is 'A' for an Acknowledge or 'N' for a Nack.

(R|W) One character, either 'R' or 'W' for a Read or a Write operation.

<dd> The operation payload of byte count. On a Read operation this number indicates the number
of bytes to read from the slave. On a Write operation this is a sequence of hexadecimal 8-
bit values: the payload to write to the slave.

The reply to a Write command is one 'A' for each byte written to the slave in case of success.
If the slave Nacks one byte, the transaction will be stopped (a Stop condition is put on the
bus) and a 'N' is sent to the user.

The reply to a Read command is the data read from the slave device.

S Repeated Start Condition. This command can be added to a command, resulting in a repeated
start condition.

The reply to 'S' is always 'S'. This helps to distinguish between data bytes from different
transactions.

P Stop Condition.

The reply to 'P' is always 'P'.

In order to illustrate the command structure, let's write down a simple Read operation:

IS<aa>R<dd>P

and a simple Write operation:

IS<aa>W<dd>P

The following examples show the use of the commands.

Example 3.4. Writing 3 bytes to a slave

< IS12W010203P
> ISAAAAP

Example 3.5. Reading 5 bytes from a slave

< IS21R05P
> ISA3132333435P

Example 3.6. Combining write and read into one transaction

< IS12W010203S21R05P
> ISAAAASA3132333435P

I2C Bus Clear
If the data line (SDA) is stuck LOW, the master should send 9 clock pulses. The device that held the
bus LOW should release it sometime within those 9 clocks.

In userial, this operation is currently implemented as Start condition, followed by a general call address
and a Stop condition.

Protocol Description

5

IX

IX The I2C bus clear command. This command has no parameters. The reply to a 'IX' command
is always IX.

Example 3.7. I2C bus clear

< IX
> IX

I2C Slave Reset
The I2C specification defines a slave reset command. This reset consists of a General Call, followed
by the byte 0x06. userial does not provide a specific command for it, because the following command
can be used to achieve the same effect:

Example 3.8. I2C slave reset

< IS00W06P
> ISAAP

GPIO Protocol

GPIO Configuration
With the GPIO configuration command it is possible to specify the I/O direction of each pin of the
I/O port individually.

GC<p><dddddddd>[<p><dddddddd>…]

GC Start of a GPIO configuration command.

<p> The port name. On the userial board, ports 'A' and 'B' are supported.

<dddddddd> The direction of the pins: 'I' for input or 'O' for output. The first character corresponds
to bit 7, the last character corresponds to bit 0.

userial replies to a GPIO command with the configuration that has been actuated.

The following command configures the port B with pins 7,6,3,2 and inputs and pins 5,4,1,0 as outputs.

Example 3.9. GPIO port B configuration

< GCBIIOOIIOO
> GCBIIOOIIOO

GPIO Read
The read-back of ports is simple. The port names are listed after the 'GR' command. The data is
returned in hexadecimal format.

GR<p>[<p>…]

GR Start of a GPIO read command.

<p> The port name.

userial replies to a GPIO command with the port number, followed by the logical value of the IO lines.

For example, to read port B and A back (in this order):

Protocol Description

6

Example 3.10. GPIO bit read

< GRBA
> GRB24A02

GPIO Bit Set
Individual bits can be set using the 'GB' command.

GB<p><dddddddd>[<p><dddddddd>…]

GB Start of a GPIO set command.

<p> The port name.

<dddddddd> The data of each pin: '1', '0', to set and reset a pin, 'F' to flip the value of a bit, 'X'
to leave the value of a bit unchanged.

userial replies to a GPIO set command with the data read from the port, as a bit field.

For example, to write data to port A and B:

Example 3.11. GPIO bit set

< GBA010000xxBFF00xx11
> GBA01000001B10000011

This command can also be used to read back the current value of a port, in a binary format:

Example 3.12. GPIO bit set, binary read back

< GBAxxxxxxxxBxxxxxxxx
> GBA01000001B10000011

SPI Protocol

SPI Configuration
The SPI configuration command can set a series of parameters: the operation mode, the data order
and the clock frequency.

SC<m><o><dd>

SC Start of a SPI configuration command.

<m> The SPI mode. See Table 3.1, “SPI mode” for possible values of this parameter.

Table 3.1. SPI mode

SPI Mode Shift SCK-edge Capture SCK-edge

0 Falling Rising

1 Rising Falling

2 Rising Falling

3 Falling Rising

<o> When this value is set to 'L', the LSB of the data word is transmitted first. When this value is
set to 'M', the MSB of the data word is transmitted first.

Protocol Description

7

<dd> The frequency of the SPI clock rate in kHz, expressed as a hexadecimal number.

The reply to this command is the effective setting of the SPI interface.

Example 3.13. SPI configuration

< SC0L1007
> SC0L1000

SPI Reads and Writes
Data are written to the SPI bus with the write command. It has the following form: the operation mode,
the data order and the clock frequency.

SW[H|L]<dd>[<dd>…]

SW Start of a SPI transfer command.

[H|L] One optional character, either 'H' or 'L'. This parameter indicates if the SPI Slave
Select line must be toggled during the transfer. If 'H', the SS line will be held high
during the transfer, if 'L', the SS line will be held low. Specify nothing if the SS
line should not be changed.

<dd>[<dd>…] One or more bytes of data to be written to the SPI slave.

The reply to this command is the data read during the transfer.

Example 3.14. SPI read and write, with SS line active

< SWH01020304
> SWA1B2C3D4

Example 3.15. SPI read and write, without changing the SS line

< SW01020304
> SWA1B2C3D4

ADC Protocol

ADC Configuration
The ADC device can be configured to use the internal reference voltage, or one of the external voltages
on AVcc or AREF. At startup, userial uses the internal reference, 2.56V.

To query the current configuration, send the command 'AC'. The description of a ADC configuration
command is:

AC[<t><v.vv>]

AC ADC config command.

<t> The type of voltage reference:

Table 3.2. ADC voltage reference type

Type Description

'I' Internal 2.56V Voltage Reference with external capacitor on AREF pin

'C' AVcc with external capacitor on AREF pin

Protocol Description

8

Type Description

'F' AREF, Internal Vref turned off

<v.vv> The actual voltage reference. This value is used to calculate the voltage for the 'AV'
command.

The reply to this command is the string "AC", followed by the ADC configuration.

Example 3.16. ADC configuration to AREF reference, 3.3V

< ACF3.30
> ACF3.30

ADC Readback
The ADC peripheral can be used directly without initialisation. The only parameter the

AR<c>

AR Start of an ADC read command.

<c> The ADC channel.

The reply to this command is the string "AR", followed by the ADC value in headecimal format.

Example 3.17. ADC read from channel 0

< ADR0
> AR0167

ADC Readback in Volts
This command is actually the same as the previous ADC read command. The result is given as using
the reference voltage given in the ADC config.

AV<c>

AV Start of an ADC Voltage read command.

<c> The ADC channel.

The reply to this command is the string "AV", followed by the voltage in decimal.

Example 3.18. ADC read Voltage from channel 0

< ADV0
> AV1.1569

Comments
Lines that start with '#' are comments and all characters until the end of line are ignored. This is useful
when working with batch files that are sent to userial.

9

Chapter 4. Firmware upgrade
Recompiling the Firmware

The userial firmware is pre-compiled for the ATMEL AT90USB647 chip. The software can be
compiled using AVR-GCC [https://gcc.gnu.org] under Linux, *BSD and Mac OS, or WinAVR [http://
winavr.sourceforge.net] under Windows. Just type make on the command line prompt.

Alternative target or frequency can conveniently be set by overriding the MCU and F_CPU variables
in the project Makefile. Alternatively, the variables can be specified on the command line, as in
the following example:

make MCU=at90usb162 F_CPU=8000000UL

The file version.h allows to selectively disable some features in the firmware. These compile
switched all start with the prefix FEATURE_. A value of 1 enables the feature, a 0 disables it.

Firmware upgrade using FLIP
ATMEL ships the chip with a pre-programmed boot loader. This makes it possible to update the userial
firmware with just a USB cable. All that's needed is a USB cable, a jumper and ATMEL's FLIP [http://
www.atmel.com/tools/FLIP.aspx] boot loader. Follow this list for an update of the firmware:

1. Power down the userial board

2. Close the jumper JP4

3. Power up the userial board by connecting it to the PC

4. Launch FLIP boot loader and update the firmware

5. Power down the userial board

6. Remove jumper JP4

An alternative to FLIP, especially for Linux and OS X is dfu-programmer [https://dfu-
programmer.github.io].

Firmware upgrade using ButtLoad
Since ATMEL's FLIP boot loader is not Open Source and the protocol is not published, people
have written alternative boot loaders. One very good boot loader is Dean Camera's ButtLoad
[http://www.fourwalledcubicle.com/ButtLoad.php], that is also included in the LUFA [http://
www.fourwalledcubicle.com/LUFA.php] library. This boot loader uses a protocol documented in the
application note AVR109 [http://www.atmel.com/Images/doc1644.pdf]: Self Programming.

Firmware upgrades are performed as in the section called “Firmware upgrade using FLIP”, with the
only variation in the download procedure. The following example used avrdude to download the
firmware, but alternative clients, include AVR Studio, can be used instead.

avrdude -p at90usb647 -P /dev/ttyACM0 -c avr109 -U flash:w:userial.hex

Upgrading the boot loader
The boot loader itself can not be upgraded using a boot loader. It must be downloaded using the JTAG
interface.

https://gcc.gnu.org
https://gcc.gnu.org
http://winavr.sourceforge.net
http://winavr.sourceforge.net
http://winavr.sourceforge.net
http://www.atmel.com/tools/FLIP.aspx
http://www.atmel.com/tools/FLIP.aspx
http://www.atmel.com/tools/FLIP.aspx
https://dfu-programmer.github.io
https://dfu-programmer.github.io
https://dfu-programmer.github.io
http://www.fourwalledcubicle.com/ButtLoad.php
http://www.fourwalledcubicle.com/ButtLoad.php
http://www.fourwalledcubicle.com/LUFA.php
http://www.fourwalledcubicle.com/LUFA.php
http://www.fourwalledcubicle.com/LUFA.php
http://www.atmel.com/Images/doc1644.pdf
http://www.atmel.com/Images/doc1644.pdf

10

Chapter 5. Hardware Description

Jumpers and Connectors

Table 5.1. Jumpers

Jumper Position Default Function

JP1 C5 closed Pull-up resistor on SCL line. If open, the pull-up resistor
is disconnected.

JP2 C5 closed Pull-up resistor on SDA line. If open, the pull-up
resistor is disconnected.

JP3 C6 1-2 closed Power selector for SCL and SDA pull-ups. In position
1-2 the pull-ups are connected to +3V3, in position 2-3
the pull-ups are connected to +5V. If no jumper is set,
both pull-ups are disabled.

JP4 D5 open Boot loader enable. When this jumper is closed the
controller runs the boot loader code instead of the
application code. Used for firmware upgrades.

JP5 B6 open For testing purposes. If closed, the AVR micro will
source power to the circuit. This jumper must be left
open all the time.

JP6 A6 1-2 closed Power selector for SPI interface. In position 1-2 the SPI
power is +3V3, in position 2-3 the power is +5V.

JP7 D1 closed Power switch. When this jumper is open the micro
controller is disconnected from the power supply.

Table 5.2. I2C connector, SV7

Pin Function

1 SDA

2 VCC

3 SCL

4 GND

Table 5.3. SPI connector, SV3

Pin Function

1 MOSI

2 NC

3 MISO

4 NC

5 SS

6 NC

7 SCK

8 NC

9 VCC

10 GND

Hardware Description

11

Table 5.4. JTAG connector, SV1

Pin Function

1 TCK

2 GND

3 TDO

4 +3.3V

5 TMS

6 !RESET

7 +3.3V

8 NC

9 TDI

10 GND

Board

Figure 5.1. userial board

Hardware Description

12

Schematic
Figure 5.2. userial schematic

	Userial USB to I2C/SPI/GPIO Bridge
	Table of Contents
	Chapter 1. Introduction to userial
	Chapter 2. Installation
	Installation on Linux, BSD, OS X
	Driver installation on Microsoft Windows

	Chapter 3. Protocol Description
	Firmware Version request
	I2C Protocol
	I2C Configuration
	I2C Reads and Writes
	I2C Bus Clear
	I2C Slave Reset

	GPIO Protocol
	GPIO Configuration
	GPIO Read
	GPIO Bit Set

	SPI Protocol
	SPI Configuration
	SPI Reads and Writes

	ADC Protocol
	ADC Configuration
	ADC Readback
	ADC Readback in Volts

	Comments

	Chapter 4. Firmware upgrade
	Recompiling the Firmware
	Firmware upgrade using FLIP
	Firmware upgrade using ButtLoad
	Upgrading the boot loader

	Chapter 5. Hardware Description
	Jumpers and Connectors
	Board
	Schematic

